

A Whitelisting Approach to Zero-Trust

Cyber Defense

Tzi-cker Chiueh 闕志克

Information and Communications

Research Laboratories 資通所

Lessons from Recent Incidents

• TSMC security breach
1. Software installation USB carries malware (WannaCry)

2. Connected new computer to internal network without AV scan

3. Malware propagated around the network without barriers

• 總統府被駭

1. Staff computer was compromised when connected to Internet

2. Compromised computer brought into intranet to access email
server

• 中油網路系統遭到駭客攻擊

1. AD server compromised and job scheduling policy tampered

2. All hosts under compromised AD server run distributed malware

• Ransomware attacks against 台塑化 、力成、盟立, Garmin, etc.

• Lessons: (1) Vulnerability exploitation (2) BYOD (3) Lateral propagation

How to Exploit a Vulnerability

Network-Facing Application

Malware (3)

Shell Code (2)

Cause Damage (5)

Run (4)

Vulnerability (1)

Attacker’s objective: get a program into the victim’s computer
Example: Drive-by download, in which an email containing a link, which
points to a page whose content exploits a vulnerability of a browser

How to Stop a Vulnerability-Exploiting Attack

Network-Facing Application

Can’t Download
Malware (3)

Shell Code
Can’t Run (2)

Detect Damage
Made (5)

Malware
Can’t Run (4)

Software Has No
Vulnerability (1)

Many AI-based or anomaly
detection-based cyber security
solutions are here Security
 Information and Event Management (SIEM)

How to Stop a Vulnerability-Exploiting Attack

Network-Facing Application

Can’t Download
Malware (3)

Shell Code
Can’t Run (2)

Detect Damage
Made (5)

Malware
Can’t Run (4)

Software Has No
Vulnerability (1)

• Blacklist
• Whitelist

NCCIC’s Seven Strategies for Defending

Industrial Control Systems

Windows-based AWL

• AWL check for binary code, shared library and kernel module, as well as
scripts written in interpretive languages, e.g., Power shell, command shell,
python, Java, etc.

• System administration flexibility: physically enabled scoped turn-off of AWL
check to enable interactive system maintenance & false positive resolution

• Main Technical Challenges:
– Automated creation of the initial application whitelist, e.g., a Windows 2020 server

– Automated and accurate AWL update upon application Installation or update (AIU)

• Manually re-scan a given Windows machine

• Manually initiate an AIU transaction against a set of machines

• A Windows Update server initiates an AIU transaction against a set of client machines

• An AD server initiates an AIU transaction against a set of AD client machines

• When an application whitelisted on a Windows machine self-updates itself, e.g.,
Chrome

What If Allowed Programs Have Vulnerabilities?

Network-Facing Application

Can’t Download
Malware (3)

Shell Code
Can’t Run (2)

Detect Damage
Made (5)

Malware
Can’t Run (4)

Software Has No
Vulnerability (1)

PAID, Control
Flow Integrity

Program Semantics-Aware Intrusion Detection

Application
Source Code

Call Site
Flow Graph

Application
Binary Code

Compile Time Run Time

System Call
Pattern Checker

PAID
Compiler

System call

RUN
USER

KERNEL

Objective: A program is only allowed to make system calls at run time in a
 way specified by its code: which calls, where and in what order

S11, S8, S92, S13, …

S11, S8, S76, S21, ….

Control Flow Integrity Assurance

• Objective: A program’s execution follows its control flow graph

• Why?
– Code injection attack is getting harder

– Code reuse attack is on the rise

• Return to libc

• Return-oriented programming (ROP)

• Enforcement of control flow integrity
– Compile time: compute the control

 flow graph and targets of indirect

 jumps/calls

– Run time: check the actual targets of indirect jumps/calls are the same as those
computed at compile time

• Used in Android kernel/framework

Attack?

Multi-Tier Whitelisting as Unified Host Defense

• Key idea: Extract the allowed run-time behaviors from programs installed on a
fixed-functionality device, and check the run-time execution of these programs
against the allowed behaviors to detect any deviations/attacks

– Characterize the good rather than profile the bad

– Fixed-functionality devices include IoT device/gateway, ATM, SWIFT server,
PLC controlle, machining tool, WiFi router, smart lamp post, smart meter,
smart speaker, home gateway, drone, autonomous driving vehicle, etc.

• Multiple tiers of whitelist check on a program’s run-time behavior

Tier 1: A program’s binary code as a whole

Tier 2: The set of system resources accessed by a program

Tier 3: The system calls that a program makes

Tier 4: The control transfer flow during a program’s execution

How to Whitelist a Fixed-Functionality Device?

P1
P2
P3
….
P16
P17

P1
P2
P3
….
P16
P17

P1’
P2’
P3’
….
P16’
P17’

Application
Whitelist

System
Call

Pattern

Application
Whitelist

System
Call

Pattern

Control
Flow

Graph

Beyond Individual Hosts

Applying Whitelisting to Enterprise Security

• Level 1: Which programs are allowed to run on a server

• Level 2: Which system resources on a server are accessible to each allowed
program on that server

• Level 3: Which client computers and other servers are allowed to interact
with programs running on a server

• Level 4: Which programs on allowed clients/servers are permitted to
interact with programs running on a server

Bring Your Own Device (BYOD)

• Devices brought into an enterprise by
official employees and unofficial
contractors

– Laptop, smartphone, USB flash drive

• Malware on these devices could bypass
peripheral defense to compromise the
enterprise network

• Defense strategy: Enforce the invariant
that on BYOD devices, only pre-defined
programs, e.g. virtual smartphone client,
could interact with services on the
enterprise network

APP Streaming/VMI

• Use model: every enterprise employee is given a virtual smartphone in the
cloud to do office work

– An enterprise employee’s or contractor’s smartphone/laptop is able to interact with the
enterprise’s IT services through exactly one program: the AP/VMI client.

• Vision: One APP for all (Android) APPs
– APPs run in the cloud, experience all sensors in a user’s smartphone, and stream their outputs

to the smartphone’s audio/video devices.

– No enterprise data could be downloaded to employee smartphones.

– Enterprise smartphones/laptops now could be managed: data leakage prevention for LINE.

 Legacy VMI

App-Level Firewalling: Micro-Segmentation

• Objective: Limit the scope of lateral
propagation of a malware attack when it
compromises an enterprise net node

– Flat VLAN Application-aware network
segment

• Communications Whitelisting: Restrict the
allowed communications among virtual
machines or containers according to
application-level communications patterns
– 192.168.1.10:7891 --- 192.168.2.3:80
– Chrome: xxxx --- Apache:80

• Challenge: How to distinguish between
attacks and firewall rule violations due to
exceptions or dynamic environments?

192.168.100.1:3000
App: pass-management

192.168.100.5:80
App: driver-ui

0.1ms
0.2ms 0.5ms

0.05ms

0.2ms 0.4ms

Whitelisting as Unified Cyber Defense Strategy

• Carefully design (green field) or characterize (legacy) allowed system behaviors

– Which software programs

– What resources they could access

– Which programs could communicate with which

Google
Chrome

/usr/a/cache Port
10000-
20000

/dev/camera
/dev/speaker
/dev/microphone

N1:B34:80 N7:B12
N3:B21:8080 N11:B29
N7:B9:9090 N32:B87

VS1 VS2 VS3 VS4

VMI Client
Level 1:

Application Whitelisting

Level 2: SELinux

Level 3: Micro
Segmentation

Level 4:
Virtual

Mobility
Infrastructure

Summary

• Whitelisting is a generalization of secure boot to every aspect of a
computer system’s run-time behavior
– BIOS

– OS

– Application’s static image

– Application’s dynamic behavior

– Communicating parties over the network

– Programs used by communicating parties

• Unified zero-trust design principle: Only those that are explicitly allowed
could proceed at run time

– Pro: Zero false negative and no need to worry about new attacks

– Con: How to ensure zero false positive in the presence of incomplete security
policy rules and system changes

Thank You!

Questions and Comments?

tcc@itri.org.tw

