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Lessons from Recent Incidents 

• TSMC security breach 
1. Software installation USB carries malware (WannaCry) 

2. Connected new computer to internal network without AV scan 

3. Malware propagated around the network without barriers 

• 總統府被駭 

1. Staff computer was compromised when connected to Internet 

2. Compromised computer brought into intranet to access email 
server 

• 中油網路系統遭到駭客攻擊 

1. AD server compromised and job scheduling policy tampered 

2. All hosts under compromised AD server run distributed malware 

• Ransomware attacks against 台塑化 、力成、盟立, Garmin, etc. 

• Lessons: (1) Vulnerability exploitation (2) BYOD  (3) Lateral propagation 



How to Exploit a Vulnerability 
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Vulnerability  (1) 

Attacker’s objective: get a program into the victim’s computer 
Example: Drive-by download, in which an email containing a link, which 
points to a page whose content exploits a vulnerability of a browser 



How to Stop a Vulnerability-Exploiting Attack  
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Many AI-based or anomaly  
detection-based cyber security  
solutions are here   Security 
 Information and Event Management (SIEM) 
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• Blacklist 
• Whitelist 



NCCIC’s Seven Strategies for Defending 

Industrial Control Systems 



Windows-based AWL 

• AWL check for binary code, shared library and kernel module, as well as 
scripts written in interpretive languages, e.g., Power shell, command shell, 
python, Java, etc. 

• System administration flexibility: physically enabled scoped turn-off of AWL 
check to enable interactive system maintenance & false positive resolution 

• Main Technical Challenges:  
– Automated creation of the initial application whitelist, e.g., a Windows 2020 server 

– Automated and accurate AWL update upon application Installation or update  (AIU)  

• Manually re-scan a given Windows machine 

• Manually initiate an AIU transaction against a set of machines 

• A Windows Update server initiates an AIU transaction against a set of client machines 

• An AD server initiates an AIU transaction against a set of AD client machines 

• When an application whitelisted on a Windows machine self-updates itself,  e.g., 
Chrome 

 



What If Allowed Programs Have Vulnerabilities?  
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PAID, Control  
Flow Integrity 



Program Semantics-Aware Intrusion Detection   
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Objective:  A program is only allowed to make system calls at run time in a  
                     way specified by its code: which calls, where and in what order  

S11, S8, S92, S13, … 

S11, S8, S76, S21, …. 



Control Flow Integrity Assurance  

• Objective: A program’s execution follows its control flow graph 

• Why? 
– Code injection attack is getting harder 

– Code reuse attack is on the rise  

• Return to libc 

• Return-oriented programming (ROP) 

• Enforcement of control flow integrity  
– Compile time: compute the control 

    flow graph and targets of indirect  

    jumps/calls 

– Run time: check the actual targets of indirect jumps/calls are the same as those 
computed at compile time 

• Used in Android kernel/framework 

 

Attack? 



Multi-Tier Whitelisting as Unified Host Defense 

• Key idea: Extract the allowed run-time behaviors from programs installed on a 
fixed-functionality device, and check the run-time execution of these programs 
against the allowed behaviors to detect any deviations/attacks 

– Characterize the good rather than profile the bad  

– Fixed-functionality devices include IoT device/gateway, ATM, SWIFT server, 
PLC controlle, machining tool, WiFi router, smart lamp post, smart meter, 
smart speaker, home gateway, drone, autonomous driving vehicle, etc. 

• Multiple tiers of whitelist check on a program’s run-time behavior  

Tier 1: A program’s binary code as a whole 

Tier 2: The set of system resources accessed by a program 

Tier 3: The system calls that a program makes  

Tier 4: The control transfer flow during a program’s execution 

 



How to Whitelist a Fixed-Functionality Device? 
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Beyond Individual Hosts 



Applying Whitelisting to Enterprise Security 

• Level 1: Which programs are allowed to run on a server  

• Level 2: Which system resources on a server are accessible to each allowed 
program on that server 

• Level 3: Which client computers and other servers are allowed to interact 
with programs running on a server   

• Level 4: Which programs on allowed clients/servers are permitted to 
interact with programs running on a server   



Bring Your Own Device (BYOD ) 

• Devices brought into an enterprise by 
official employees and unofficial 
contractors 

– Laptop, smartphone, USB flash drive 

• Malware on these devices could bypass 
peripheral defense to compromise the 
enterprise network 

• Defense strategy: Enforce the invariant 
that on BYOD devices, only pre-defined 
programs, e.g. virtual smartphone client, 
could interact with services on the 
enterprise network  



APP Streaming/VMI  

• Use model: every enterprise employee is given a virtual smartphone in the 
cloud to do office work 

– An enterprise employee’s or contractor’s smartphone/laptop is able to interact with the 
enterprise’s IT services through exactly one program: the AP/VMI client. 

 

 

 

 

 

 

 

• Vision: One APP for all (Android) APPs   
– APPs run in the cloud, experience all sensors in a user’s smartphone, and stream their outputs 

to the smartphone’s audio/video devices. 

– No enterprise data could be downloaded to employee smartphones. 

– Enterprise smartphones/laptops now could be managed: data leakage prevention for LINE.   

 

 

 

 

 

 
 

 

 

 

 

 Legacy   VMI  



App-Level Firewalling: Micro-Segmentation 

• Objective: Limit the scope of lateral 
propagation of a malware attack when it 
compromises an enterprise net node 

– Flat  VLAN  Application-aware network 
segment 

• Communications Whitelisting: Restrict the 
allowed communications among virtual 
machines or containers according to 
application-level communications patterns 
– 192.168.1.10:7891 --- 192.168.2.3:80 
–  Chrome: xxxx  --- Apache:80 

• Challenge: How to distinguish between 
attacks and firewall rule violations due to 
exceptions or dynamic environments? 
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Whitelisting as Unified Cyber Defense Strategy   

• Carefully design (green field) or characterize (legacy) allowed system behaviors  

– Which software programs 

– What resources they could access 

– Which programs could communicate with which   
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Summary 

• Whitelisting is a generalization of secure boot to every aspect of a 
computer system’s run-time behavior 
– BIOS 

– OS 

– Application’s static image  

– Application’s dynamic behavior 

– Communicating parties over the network  

– Programs used by communicating parties  

• Unified zero-trust design principle: Only those that are explicitly allowed 
could proceed at run time  

– Pro: Zero false negative and no need to worry about new attacks 

– Con: How to ensure zero false positive in the presence of incomplete security 
policy rules and system changes 

 



Thank You! 
 

Questions and Comments? 

tcc@itri.org.tw 


