
SRE 價值再進化！快速推動
高效能企業系統環境

https://docs.microsoft.com/en-us/azure/site-reliability-engineering/

Why do bad things happen?

ACCIDENT

!

Modified from

Reason, 1991

Building reliable systems is a

shared responsibility

Customer application

Resiliency features

Resilient foundation

Reliability

Customer application

Resiliency features

Resilient foundation

Reliability

Why is Reliability Important?
Failures happen.

Reliable applications require resilience

ResilienceReliability

Microsoft Azure Well-Architected Framework

Architecture guidance and best practices to optimize the quality of Azure workloads,

based on 5 aligned and interconnected pillars

Cost

Optimization

Operational

Excellence

Performance

Efficiency

Reliability Security

Learn more https://aka.ms/architecture/framework

https://aka.ms/architecture/framework

Key Stakeholders

❑ Cloud Architect

❑ SecOps

❑ Project Manager

❑ Identity & Access

❑ Data Architect

❑ Network engineering

❑ Solution owner

❑ DevOps manager

❑ SRE Lead

❑ Governance

❑ Compliance manager

Common Definitions

 Important Targets and Measures
 RTO (Recovery Time Objective) – The duration of an outage after which the system is

expected to have recovered

 RPO (Recovery Point Objective) – The duration of data loss that is allowable during an outage

 SLA (Service Level Agreement) – The availability, usually as a percent, that the system or

component contractually provides, often within a specified scope.

 SLO (Service Level Objective) – The availability, like SLA, that the system internally sets as an

objective. This is usually not published but must be greater-or-equal to the SLA

 Attainment Interval – The period over which the SLA is measured (for Azure, one month)

 MTTD (Mean Time To Detect) – Average time to detect a failure after it has occurred

 MTTR (Mean Time To Recover) – Average time to recover from a failure once it occurs

 We care most about obtaining and working on SLA/SLO/RTO/RPO

Application availability needs
Examples of applications commonly seen at each availability tier

Cost + complexity

A
v
a
il
a
b

il
it

y

Video delivery, broadcast systems

ATM transactions, telecommunications systems

Batch processing, data extraction, transfer, and load jobs

Internal tools like knowledge management, project tracking

Online commerce, point of sale

99%

99.9%

99.95%

99.99%

99.999%

Strategies to Reduce RTO
 In many cases, the straightforward SLA will not meet the RTO

 A first step is to improve stage-by-stage
 Use the checklists by technology

 There are strategies for web, application, load balancing, network, database and more

 Focus on automatic removal of failed components to restore service (e.g. failover)

 Focus on “blast radius” by creating slices of application that can fail

separately
 Smaller failures are usually much less impactful and don’t require multiple regions

 This may also help with Blue/Green deployments

 Mean Time To Detection (MTTD) is an important measure
 You can’t fix what isn’t detected

 Understand where manual intervention is needed and make sure it’s reasonable
 An RTO of 5-minutes with manual intervention is not possible

 Assume that some repairs may require deployment
 Don’t ever skip analysis of operations and deployment pipelines

Failure Mode Analysis (FMA)
A process for building resiliency into a system, by identifying possible failure points

FMA should be part of the architecture/design phases, to build failure recovery in from the outset.

The Azure Architecture Center includes a catalog of potential failure modes and their mitigation steps. The catalog is organized by technology

or Azure service, plus a general category for application-level design. The catalog is not exhaustive, but covers many of the core Azure services.

Identify all of the components in the system.

For each component, identify potential failures that could occur.

Rate each failure mode according to its overall risk.

For each failure mode, determine how the application will respond and recover.

1

2

3

4

Failure Mode Analysis Walk-Through

Web tier subnet Business tier subnet Data tier subnet

Management
subnet

Active Directory
subnet

Name
resolution

Azure load
balancer
standard

Azure load
balancer
standard

Virtual network

Cloud
WitnessQ

u
o

ru
m

Public IP

Public IP

DDoS
Protection

Zone-
redundant
Application

Gateway

AD DS
server

AD DS
server

VM

Jumpbox

VM

Zone 1

DevOps

VM

Zone 2

VM

Zone 3

VM

Zone 1

VM

Zone 2

VM

Zone 3

SQL Server
(primary)

SQL Server
(secondary)

Zone 1

Zone 2

Zone 1 Zone 2

 Identify each potential

failure

 Rate failure according to

overall risk

 Determine how

application will respond

and recover

Download this infographic at www.aka.ms/ReliabilityInfographic

Reliability Infographic available at aka.ms/ReliabilityInfographic

How can we test Failure Modes?

 “Natural Causes”
 Environment is configured to produce the failure

 e.g. Create a file and then test an API trying to create an existing file so it can fail

 This approach is very limited and fragile

 Fault Injection
 Errors are injected from the dependencies of the component, causing a failure mode

 This approach allows for a much wider range of testing, tied to implementation

 Start simple – Don’t overthink or overbuild from the beginning

 Common methods for injecting Azure service “faults”
 Compute: Role restarts, Scale-out, Scale-in

 Networking: NSG rules to block/unblock communication to dependent services

 Storage: Customer initiated failover

 SQL: Manual failover of SQL database instances

Testing for reliability

Test regularly to validate existing

thresholds, targets and assumptions

Automate testing as much as possible

Verify how the end-to-end

workload performs under

intermittent failure conditions

Test the application against critical non-

functional requirements for performance

Conduct load testing with expected

peak volumes to test scalability and

performance under load

Perform chaos testing by injecting faults

Regular testing should be performed as part of each major change and if possible,

on a regular basis to validate existing thresholds, targets and assumptions.

Testing should also ensure the validity of the health model,

capacity model, and operational procedures.

Playwright

https://playwright.dev/

https://github.com/microsoft/playwright

https://www.youtube.com/watch?v=VMl8aV-ddMA

https://playwright.dev/
https://github.com/microsoft/playwright
https://www.youtube.com/watch?v=VMl8aV-ddMA

Azure Load Testing

Generate high-scale load without

the need for complex infrastructure

Run existing test scripts with

high-fidelity JMeter support

Eliminate infrastructure needs with

a fully managed service

Experience frictionless testing

on Azure

Chaos engineering vs. Fault injection

The practice of subjecting cloud

applications and services to real

world failures and dependency

disruptions in order to build and

validate resilience.

The deliberate introduction

of a failure into a system in

order to validate robustness

and error handling.

https://docs.microsoft.com/en-us/azure/architecture/framework/resiliency/chaos-engineering

https://docs.microsoft.com/en-us/azure/architecture/framework/resiliency/chaos-engineering

Two main ‘use cases’ for Chaos engineering

Pre-release validation
”Shift left” (test, stage)

Explore service dependencies
in a controlled environment

Gate production code flow with
CI/CD pipeline automation

Perform incident fix validation

Harden release pipeline

Certify new hardware

Perform BCDR Drills

Host Game Days

Continuous production validation
”Shift right” (canary, production)

Simulate Availability Zone or Region outages

Use for Error Budget testing

Past incident regression testing

Validate on call and live site processes

Azure Chaos Studio
Measure, understand, improve, and maintain product resilience

Hosted multitenant service
Current focus

Service Fault Injection—dependency

disruption with three ways to inject faults:

• Windows and Linux agent-based faults

• Service-direct (agentless) fault providers

• In-process fault injection: application

instrumentation for managed code

injection and API interception—

working with Microsoft Research

Public

Preview

Chaos resource provider

Automated and manual chaos experiments

REST API + SDKs

Azure Portal-integrated UI

Orchestrated experiments with

parallel and sequential fault actions

Expandable fault library

Telemetry integration

Experiment templates

Find out more at

www.aka.ms/AzureChaosStudio

Chaos experiments
Orchestrated multi-step scenarios with faults applied to subscription resource targets while under load

Hypothesis

What is being validated? What are possible outcomes?

Experiment

Orchestrated execution of workload + faults

Run against subscription resource targets.

Analysis

Baseline performance, monitoring telemetry, recovery time.

Improvement

New code, code changes. People and process changes.

Steady state

Continuous production monitoring + validation.

Hypothesis

Experiment

Analysis

Improve

Steady state

Monitoring for reliability

The application is instrumented

with semantic logs and metrics

All components are monitored and

correlated with application telemetry

A health model has been defined based on

performance, availability, and recovery targets

Azure Resource Health events are used

to alert on resource health events

Application logs are correlated

across components

Key metrics, thresholds, and indicators

are defined and captured

Azure Service Health events are used to

alert on applicable service level events

Monitor long-running workflows for failures

Monitoring and diagnostics are crucial for resiliency.

If something fails, you need to know that it failed, when it failed—and why.

Alerting
Alerts are notifications of system health issues that are found during monitoring.

Alerts only deliver value if they are actionable and effectively prioritized

by on-call engineers through defined operational procedures…

When customized alerts trigger (based
on your configured rules/thresholds)

• This depends on custom SLIs/SLOs
as defined by customers and partners

• Azure diagnostic logs and VM logs
feed into Azure Log Analytics

• Application metrics and customer
metrics feed into Application Insights

→ Azure Monitor alerts

When an unplanned outage is
happening (and what we know)

• This includes outages, maintenance,
service changes, retirements

• When we understand that impact is
at the service or platform level

• Communications are typically sent
via Azure Service Health

• Post-Incident Review (PIR) provided,
once understood

→ Azure Service Health alerts

When a resource is down or otherwise
unhealthy (but not necessarily why)

• We have detected resource level
impact, regardless of whether this is
a localized or widespread issue

• Communications typically sent
via resource health (within Azure
Service Health)

• This data is being augmented into
the Service Health experience

→ Azure Resource Health alerts

Azure communicates incidents, maintenance, and health

advisories via Azure Service Health and Service Health alerts

Azure Service Health alerts are strongly

recommended for production systems

status.azure.com

https://status.azure.com/

System notifications of imminent maintenance
Azure Scheduled Events let your VM react to maintenance

events before they impact your resources

• A local endpoint with a simple REST API

• Visibility to upcoming events across different resource types:

VMs/Cloud Services/Availability Sets/VMSS

• Includes a ‘NotBefore’ time (10–15 minutes notification)

• Acknowledge completion to expedite

• Graceful shutdown—save state, drain node, suspend jobs

• Proactive failover—fasted failover (skip detection)

• Adjust thresholds—avoid failover in the case of

VM-preserving maintenance

• Platform initiated

• In-place low-impact maintenance and Live Migration

• Interactive user calls (e.g., restart a VM)

• New: hardware failure notifications predicted by ML

curl -H Metadata:true
http://169.254.169.254/metadata/scheduledevents?

api-version=2017-08-01

{
"DocumentIncarnation": {IncarnationID},
"Events": [

{
"EventId": {eventID},
"EventType": "Reboot" | "Redeploy" | "Freeze",
"ResourceType": "VirtualMachine",
"Resources": [{resourceName}],
"EventStatus": "Scheduled" | "Started",
"NotBefore": {timeInUTC},

}
]

}

Deep dive into key technical domains

•Design

•Failure Point and Mode Analysis

•Dependencies

Application Design

•Service/SKU Configuration

•App State and Config

•Compute Availability

App/Infra Platform

•Service/SKU Configuration

•Consistency

•Replication and Redundancy

Data Platform

•Network Topology

•Network Component Availability

•Regional and DC Connectivity

Networking and Connectivity

•Recovery Strategy and Design

•Availability Targets

•Recovery Targets

Reliability and Recovery

•App Availability

•Data Latency and Throughput

•Data Size/Growth

•Network Throughput and Latency

Availability & Scalability

•Health Modelling

•Service and Resource Monitoring

•Application Instrumentation and Monitoring

•Telemetry Pipelines

•Key Metrics and Thresholds

•Alerting and Dashboards

Monitoring and Measurement

•Deployment and Automation

•Environment Builds

•Testing and Validation

DevOps

•Identity and Access

•Network Security

•Secrets Management

Security

Microsoft Azure

Well-Architected

Review

The Azure Well-Architected

Framework and the associated

Azure Architecture Assessment are

tools for customers to optimize their

workloads across the five pillars—

Cost, DevOps, Scalability, Resiliency,

and Security.

https://aka.ms/ReliabilityChecklist

https://aka.ms/ReliabilityChecklist

© Copyright Microsoft Corporation. All rights reserved.

