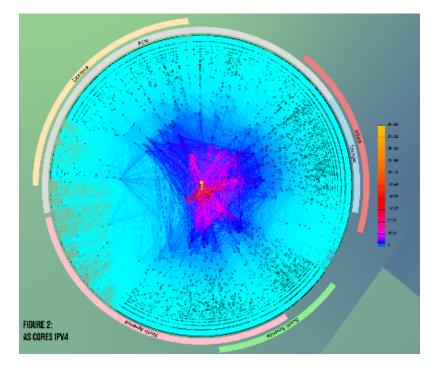
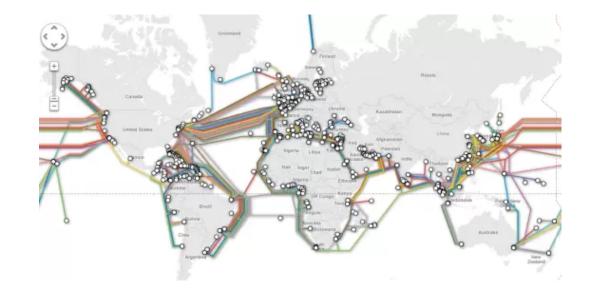
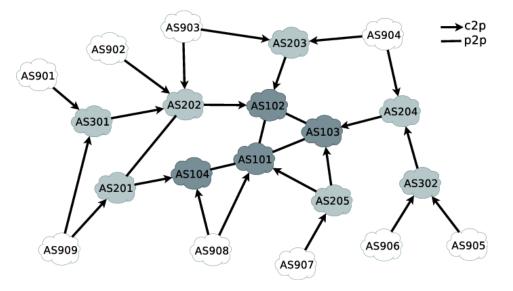
The Hitchhiker's Guide to Traffic Analysis


Jacob Chiang, CTO, Genie Networks

Routing Analytics



The Macro View Of Internet

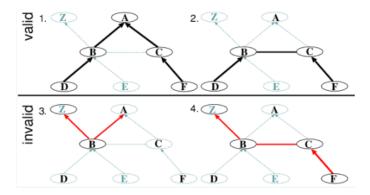

Quick Facts

- 71,417 autonomous systems (2021/03)
- 878,585 prefixes (2021/04)

Quick Facts

- ~ 1,200,000 km submarine cables
- ~ 380 submarine cables in use

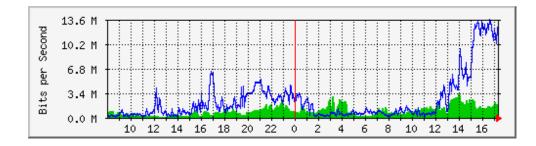
A simplified example of the AS-level Internet topology


Internet Topology

Autonomous System

A collection of connected Internet Protocol (IP) routing prefixes under the control of one or more network operators on behalf of a single administrative entity or domain that presents a common, clearly defined routing policy to the Internet.

Valid and Invalid Route

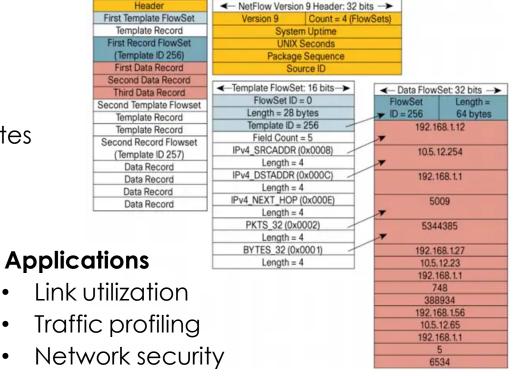

No pay, no transit.



The Demand Of Profiling

A long time ago in a network far, far away

- There's a protocol called SNMP
- There's a tool called MRTG


Typical demand of profiling

The bandwidth from AS203 to AS202

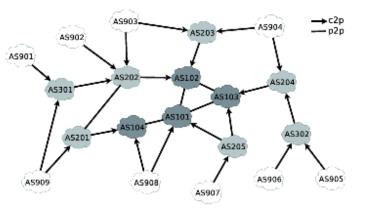
IPFIX - IP Flow Information Export

A smart person said

- Let's survey network traffic on router •
- Randomly sample one packet every S packets •
- Exports aggregated number of packets and bytes •

- Traffic engineering
- Accounting

•

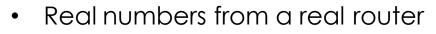

QoS monitoring

Challenge I - Confidence Interval

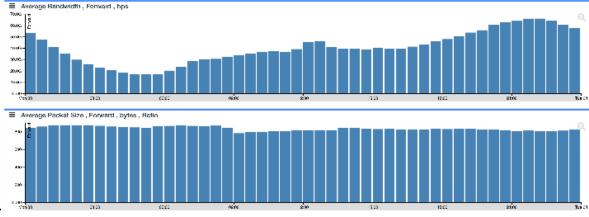
- Each packet sampled by router is a success-failure experiment.
 - Binomial proportion confidence interval an interval estimate of a success
 probability p when only the number of experiments n and the number of
 successes n_s are known.
- The success probability p is estimated as
 - $p = \hat{p} \pm \hat{e}$ where $\hat{e} = z \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$
 - $\hat{p} = \frac{n_s}{n}$ is the proportion of successes
 - z = 1.645 with 90% confidence level; 1.960(95%); 2.576(99%)
- · Convert the confidence interval to proportion of the metric.

$$\bullet \quad \hat{E} = \frac{\dot{e}}{\hat{p}} = z \sqrt{\frac{1-\hat{p}}{n \times \hat{p}}} = z \sqrt{\frac{1-\hat{p}}{n_s}} \le \frac{z}{\sqrt{n_s}}$$

• \hat{E} is bounded by n_s only

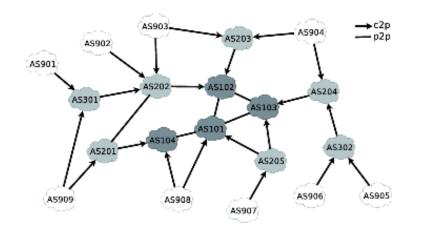


	confidence			
counted packets	99%	95%	90%	
100	25.76%	19.60%	16.45%	
1000	8.15%	6.20%	5.20%	
2000	5.76%	4.38%	3.68%	
3000	4.70%	3.58%	3.00%	
10000	2.58%	1.96%	1.65%	


Confident Granularity

- To have ~10% confidence interval, we need ~1000 sampled packets.
 - Assume the sampling rate is 1000:1, that's 1M packets before sampling
 - Assume the average packet size is ~800B, that's ~800MB traffic volume
 - 1 minute 800M*8/60 = 106Mbps
 - 5 minutes 800 M*8/300 = 21.3 Mbps
- Observation
 - Time Granularity and Metric Granularity is interchangeable

Challenge II - Volume

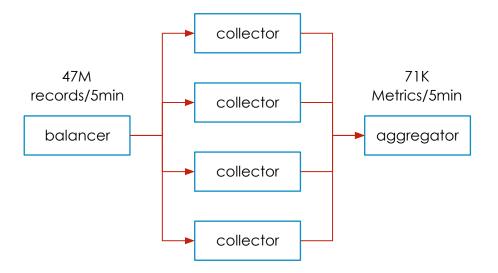

- ~400K mobile subscribers
- ~40Gbps traffic in average
- ~800B per packet
- At 1000:1 sampling rate
 - That's (40G/8/800)/1000 = 6250 records/sec
- CHT has 10M subscribers
 - That's 6250*(10M/400K)*86400 = 13.5 billions records/day
- Here're are numbers in 2019
 - 7.2 billion invoices/year, 2.0 billion mails/year.

Solution - Data Binning

EX: Traffic from AS202 to each ASN

- Input 47M records/5min
- Output 71K metrics/5min

Aggregable Metrics


• SUM, AVERAGE, MAX, MIN, ...

Non-Aggregable Metrics

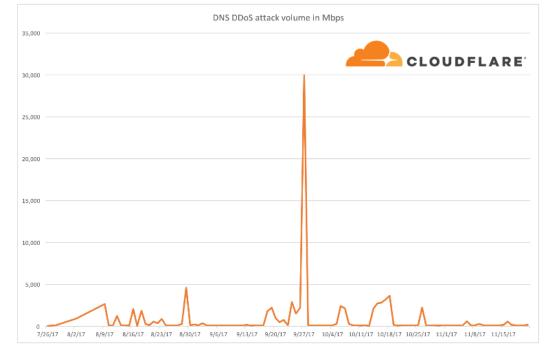
• PERCENTILE, DISTINCTCOUNT, ...

Converting records to metrics

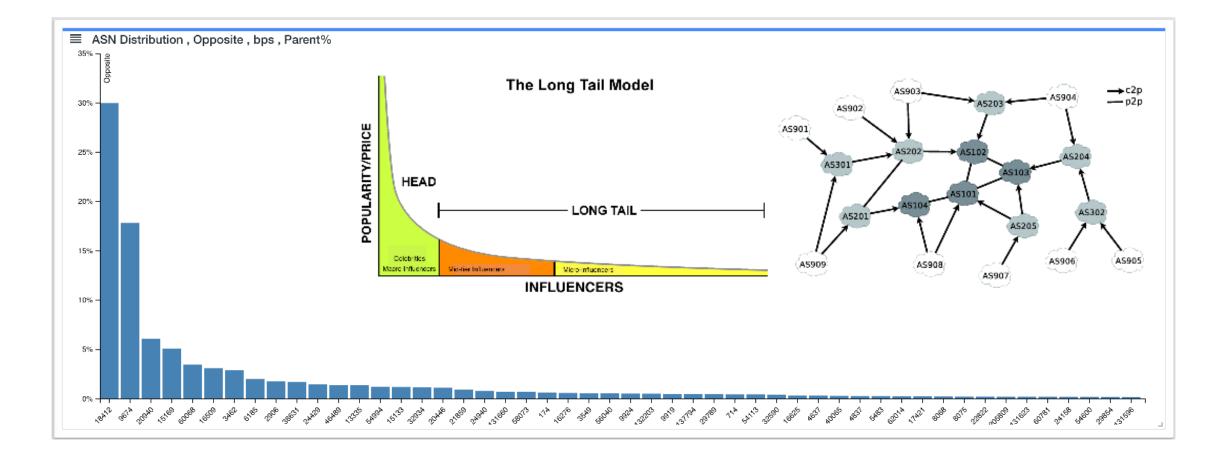
- Distribute records to multiple nodes
- Compute metrics in each node
- Aggregate metrics of all nodes

Challenge III - Cardinality

Situation

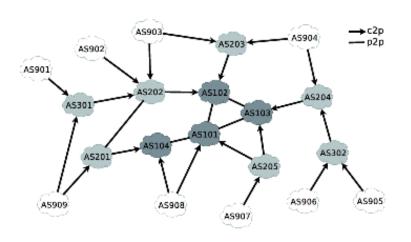

• We have a major DNS amplification attack. The scale is 50Gbps.

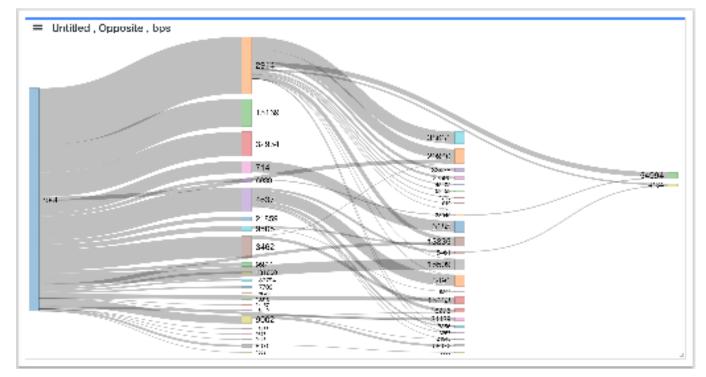
Requirement


• Find the IP of reflective servers and block them.

Problem

• There are 4 billion IP addresses.


Long Tail Distribution

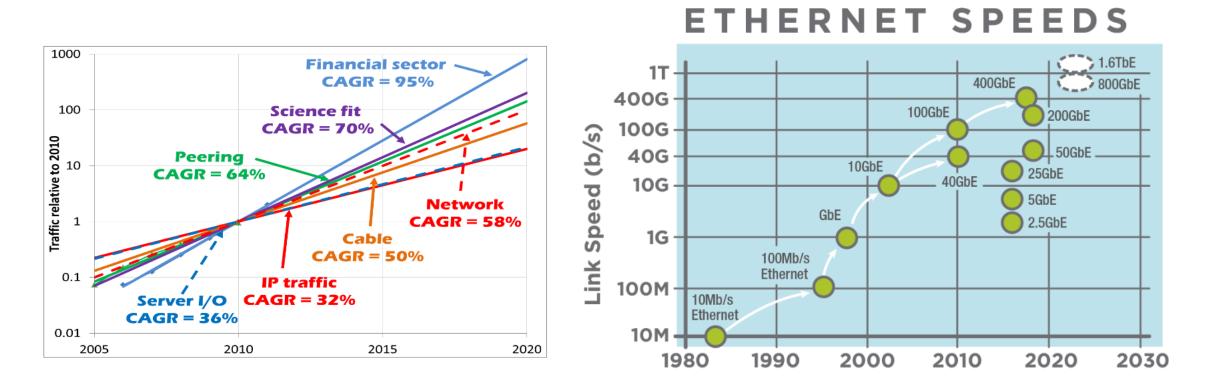


Real Site Examples

Discussion

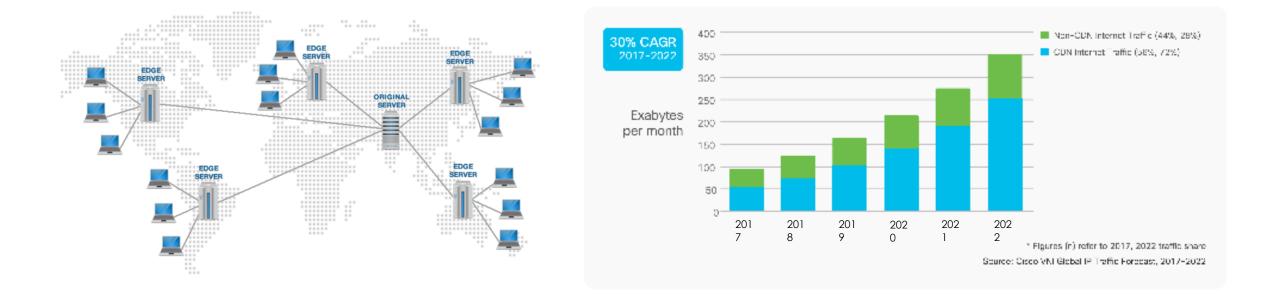
• Which ASN to peering with next

Solution - The Majority Algorithm


- Boyer–Moore majority algorithm
 - Finding the majority (>¹/₂) of a sequence of elements in linear time and O(1) space
 - Initialize an element m and a counter c with c = 0
 - For each element x of the input sequence:
 - if c = 0, then m = x and c = 1
 - else if m = x, then c = c + 1
 - else c = c 1
 - Return m
- False positive
 - 2nd pass required to confirm majority

- Finding the majority $(>\frac{1}{N})$ of a sequence
 - Initialize an array of elements m_{0..N-1} and their counters c_{0..N-1} and a threshold s = 0
 - For each element x of the input sequence:
 - if $m_i = x$ and $c_i > s$, then $c_i = c_i + 1$
 - else if $c_j \le s$ for some j, then $m_i = x$ and $c_i = s + 1$
 - else s = s + 1
 - Return m
- The most important algorithm of traffic analysis
 - Finding significant elements in linear time and O(N) complexity

Enriching Data


The Trend

Discussion

What we see from these two charts

Content DeliverY Network

Discussion

• Why Content Delivery Network

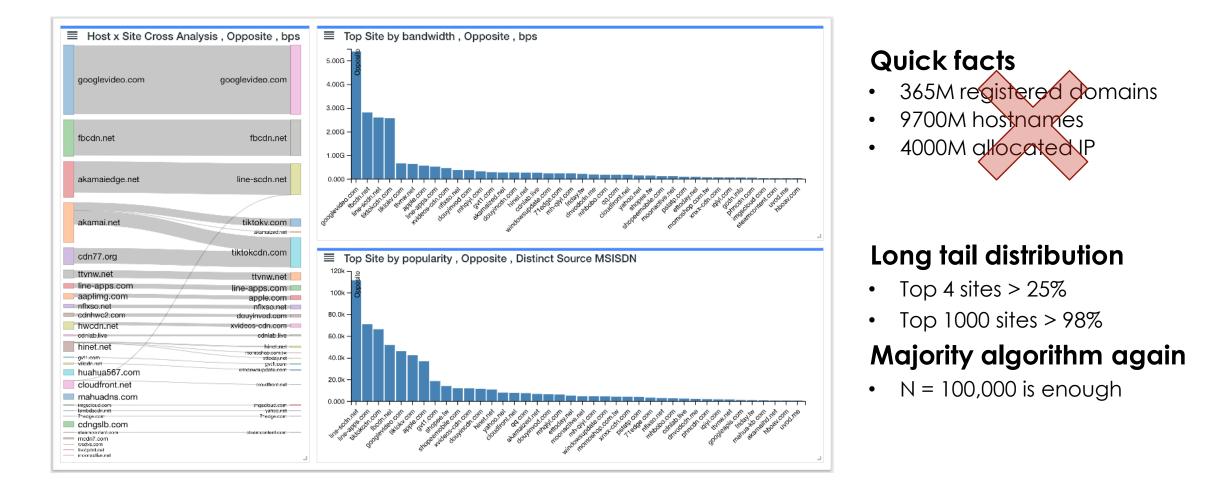
Tracing IP To Domain Name

DNS record

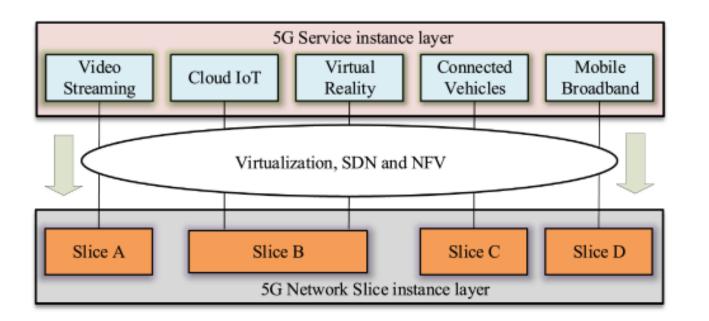
Site - the logical service

- Site FQDN download.skype.com
- OTT Provider Microsoft
- OTT Service Microsoft Skype

Host - the physical server

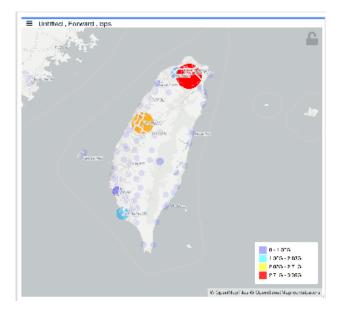

- Host FQDN e4707.dspg.akamaiedge.net
- CDN Provider Akamai

The challenge of cardinality


- 365M registered domain names
- 9700M hostnames
- 4000M allocated IP addresses

download.skype.com. download.skype.com.edgekey.net e4707.dspg.akamaiedge.net.	20542 IN	I CNAME I CNAME I A	<pre>download.skype.com.edgekey.net. e4707.dspg.akamaiedge.net. 173.222.180.229</pre>
flow	record		
flow.addr.s flow.addr.c flow.protoc flow.port.s flow.port.c	st: 10.2 ol: 6 rc: 443	0.89.21	
	name: rovider: ervice: fqdn: name:	skype. Micros Micros de4707	

Top Sites And Their Hosts



5G Network Slicing

Slicing applications

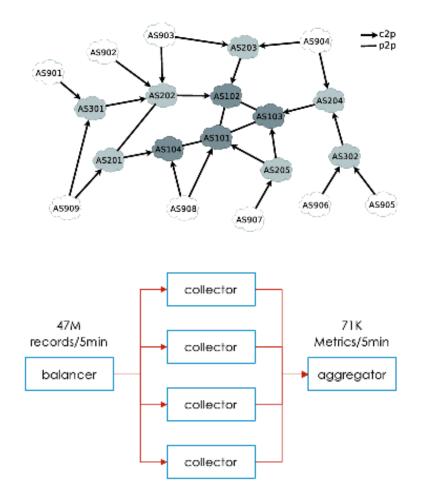
- Enhanced Mobile Broadband
- Critical Communications
- Enhanced Vehicular to Everything
- Massive Internet of Things

Tracing AAA

Example – Mobile Subscriber

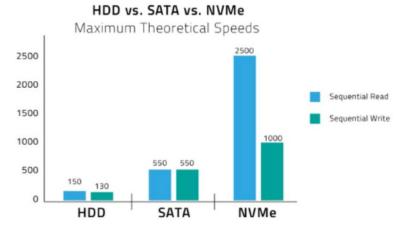
- Framed-IP-Address 10.20.89.215
- User-Name efms
- Called-Station-Id emome
- Calling-Station-Id 886972107037
- NAS-Identifier TG2GG5

Example – Broadband Subscriber


- Framed-IP-Address 110.210.73.150
- User-Name 13509820397@dg.cttgd
- Calling-Station-Id f8:0f:41:24:c6:7d
- NAS-Identifier GDZH-MS042021151021875fb33b025923

	AAA rec	ord			
_	User-Na Called- Calling	IP-Address: me: Station-Id: -Station-Id: ntifier:	efm emc 886		
		flow record			
		<pre>flow.addr.src: flow.addr.dst: protocol: 6 flow.port.src: flow.port.dst:</pre>		222.180.229 0.89.215 flo 4	
		 aaa.user_name: aaa.called_stat aaa.calling_sta aaa.nas_identif	tion:		37

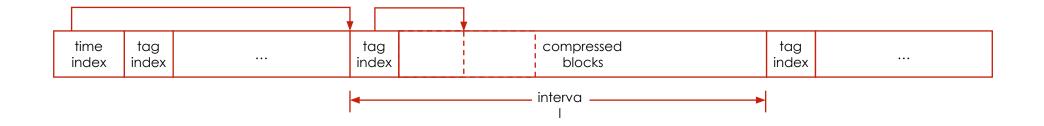
Ad-hoc Analytics


Limitation Of Data Bining

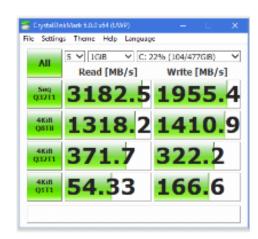
Static Report	Ad-Hoc Analytics	
Automated and produced regularly	Produced once	
Developed by an analyst	Run by a user	
Reports on ongoing activity	Answers a specific question	
More formatted with text and tables	More visual	
Distributed to larger audience	Shared with smaller audience	

The Challenge Of Volume

- CHT has 10M subscribers
 - That's 13.5 billions records per day
- Assume record size is 200 bytes
 - That's 2.7TB data per day
- To generate a **daily** report in 5 minutes
 - That's 2.7TB/300=9000MB data per second



Time Series Database (TSDB)


- Time Series Data
 - Timestamp + Tag + Data
- Time Series Database
 - Indexed by timestamp and tag only
 - Efficent write append only

- Efficent read sequential
- Efficent purge oldes
- Very suitable for ad-hoc query of network traffic data

The Challenge Of Timespan

- CHT has 10M subscribers
 - That's 2.7TB data per day
- To generate a **monthly** report in 5 minutes
 - Daily Report 2.7TB/300s = 9 GB/s
 - Monthly Report 2.7TB*30/300s = 270 GB/s
 - Annually Report 2.7TB*365/300s = 3285 GB/s
- We need a smarter solution for long timespan report

Solution - Resampling Records

Confidence interval formula

•
$$\widehat{E} = \frac{\widehat{e}}{\widehat{p}} = z \sqrt{\frac{1-\widehat{p}}{n \times \widehat{p}}} = z \sqrt{\frac{1-\widehat{p}}{n_s}} \le \frac{z}{\sqrt{n_s}}$$

	confidence		
counted packets	99%	95%	90%
100	25.76%	19.60%	16.45%
1000	8.15%	6.20%	5.20%
2000	5.76%	4.38%	3.68%
3000	4.70%	3.58%	3.00%
10000	2.58%	1.96%	1.65%

- Naive implementation
 - Randomly resample one record every P records.
 - $\widehat{M} = P\Sigma m_i$, m_i is metric of each resampled record.
- Discussion
 - What's wrong with this method

Resampling Records

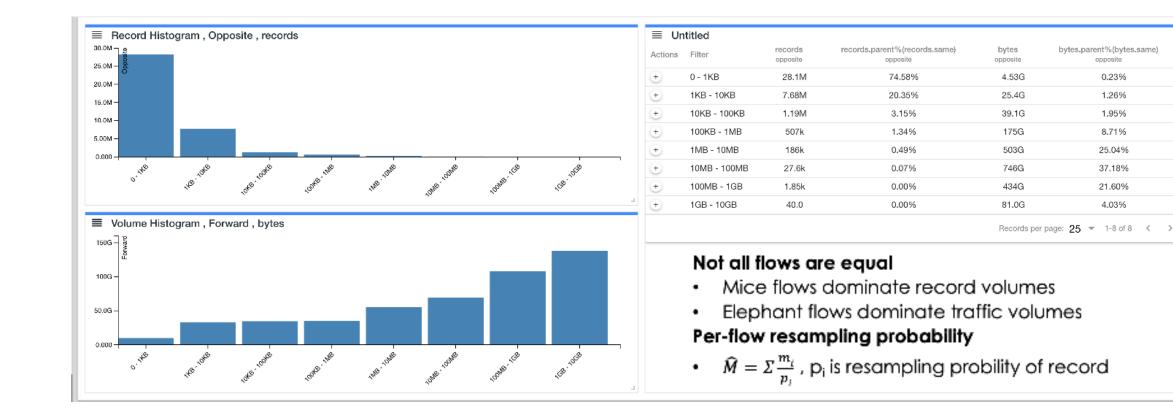
Q

opposite

0.23%

1.26%

1.95%


8.71%

25.04%

37.18%

21.60%

4.03%

Conclusion

- Traffic Analysis is a kind of big data analysis.
 - It is too big in both time and space complexity.
 - Many big data algorithms don't work.
- We can constrain the complexity at certain cost.
 - data bining query agility ⇔ storage efficiency
 - data sampling time granlarity ⇔ metric confidence
 - majority algorithm element visibility ⇔ space complexity
- The hitchhacker's guide to traffic analysis.
 - Sometimes there is no perfect solution, and good is enough.