I

21/09/2022

CYC

Homomorphic
Encryption

G (REXX) H(Z5 X)) - Homomorphic encryption is a

form of encryption that
allows computation on ciphertext

f L+ f(x)
| S, generating an encrypted result

X

* f . f(x)* ‘
o f R which, when decrypted, matches
T 1w the result of the operations as if
| they had been performed on the
plaintext.

A simple example (unpadded RSA):

A public key pk := (n,e). For any two messages m,, and m,:

E(my, pk) - E(my, pk) = m;® - my® = (my - my)? mod n = E(my - my, pk)

A security property

A homomorphic encryption cryptosystem should provide semantic
security against chosen-plaintext attacks (IND-CPA).

Generates a key pair PK, SK

Generates a key pair PK, SK

Generates a key pair PK, SK

C = E(PK, M)

Generates a key pair PK, SK

? < Guessb =7 -

The history of homomorphic encryption:

 (1978) ON DATA BANKS AND PRIVACY HOMOMORPHISMS (Rivest, Michael,
Dertouzos)

* (1984) Goldwasser—Micali Encryption Scheme (Goldwasser and Micali)

* (1999)Public key cryptosystems based on composite degree residue classes
(Paillier)

« (2015) Linearly Homomorphic Encryption from DDH (Castagno, Laguillaumie)

* (2009) Fully homomorphic encryption using ideal lattices (Gentry)

Paillier homomorphic encryption :

paillierParameter, _ := NewPaillier(128)

message := big.NewInt(8011313)

ciphertextl, _ := paillierParameter.Encrypt(message
ciphertext2, := paillierParameter.Encrypt(message
ciphertext3, := paillierParameter.Encrypt(message

)
)
)
)

ciphertext4, := paillierParameter.Encrypt(message

API server listening at: 127.0.0.1:35649
ciphertextl: 34103311692155898729011503009150665231293975998230406600694006738463832381765

plaintextl, _ := paillierParameter.Decrypt(ciphertextl)
) ciphertext2: 71027250738086354142260744921695042022655996957406835012738418445248126870777

1
plaintext2, _ := paillierParameter.Decrypt(ciphertext2
plaintext3, _ := paillierParameter.Decrypt(ciphertext3
plaintext4, _ := paillierParameter.Decrypt(ciphertext4 plaintext2: 8011313
fmt.Println("ciphertextl:", ciphertextl) ALl L
f t Pr‘j}qt'Ln (. plaintext4: 8011313
mt.
(
(

ciphertext3: 71587107449357753537754592918664725666383659091063814731925525311681655758139
ciphertext4: 62606238540484065807676628764644592566621147267102737473071647893324835596113
plaintextl: 8011313

'cipher 2:", ciphertext2

)
fmt.Println("ciphertext3:", ciphertext3)
)

fmt.Println

ciphertext4: ciphertext4
fmt.Println("plaint 1: plaintextl)
fmt.Println("plaintext2: plaintext2)
fmt.Println("plaintext3: plaintext3)
fmt.Println("plaintext4: plaintext4)

system Class group Elliptic curve

(imaginary quadratic | cryptography

order)
Hard problem factoring problem Discrete logarithm Discrete logarithm
problem problem
history Very old Gauss (~1800) Koblitz, Miller(wide use
2004~2005)
The length of private Long Medium short
key

speed of encryption fast medium fast

// Generate a private key and the corresponding public key.
var publicKey, privateKey, _ = PubKeygen(bigPrime, SAFE_PARAMETER)

// Encrypt two plaintexts by the public key
plaintextl := big.NewInt(3)
cipherMessegel := Encrypt(publicKey, plaintextl)

plaintext2 := big.NewInt(13)
cipherMessege2 := Encrypt(publicKey, plaintext2)

// Do an operation of cipherMessegel and cipherMessegeZ2.
AddResult := EvalAdd(cipherMessegel, cipherMessege2, publicKey])

// The result should be 3 + 13 = 16
decyptAddResult := Decrypt(AddResult, privateKey)
fmt.Println("The decryption of adding ciphertextl and ciphertext2 to be", decyptAddResult)

API server listening at: 127.0.0.1:22310
The decryption of adding ciphertextl and ciphertext2 to be 16

Digital Signature

Alice

Anyone

-~

| want to

~

marry Bob.

"

)

Yes or
No

Sign

Private
Key

h Public

Key

o
riv
at
e k
ey man
a
ge
m
en
T

@Q
; P

Me

Two solutions

« Multi-Signature

« Threshold Signature scheme

(t,n)-Multi-Signature

® Multi-signature is a digital signature scheme which allows a group of
users to sign a transaction.

I]}O[ﬁ@'

é ® t: the threshold of signatures or keys

® n: the total number of signatures or keys involved in the group.

National Institute of Standards an
Technology: Standardization

This artist’s conception of threshold cryptography shows a lock that can only be opened by three people working together. When
the threshold cryptosystem receives a request to process information with a secret key, it initially splits the key into shares and
sends them to the entire group, each share to a different participant. The three people must agree to work together and also
perform their own secret operations on the incoming message. From these actions, each person uses their share key — represented
by the three colored circles — to process the message, and then sends the result back to the system. Only the combination of all
three partial results can open the lock, reducing the likelihood that a single corrupt party could compromise the system.

Credit: N. Hanacek/NIST

Ref: https://www.nist.gov/news-events/news/2020/07/nist-kick-starts-threshold-cryptography-development-effort

Multi-party computation

Secure multi-party computation (MPC) can be defined as the problem of n
players to compute an agreed function of their inputs in a secure way, where
security means quaranteeing the correctness of the output as well as the
privacy of the players' inputs, even when some players cheat.

Ref: Multiparty Computation, an Introduction (Cramer et al.) , https://link.springer.com/book/10.1007/3-7643-7394-6

Yao's Millionaires’ problem

Who is rich ?

@
C

(t,n)-Threshold Signature (an application
of homomorphic encryption)

® A (t,n)-threshold signature scheme is a digital signature scheme where
any t or more signers of a group of n signers can produce signatures on
behalf of the group.

G
<8<3

L

R

Comparation

_ Threshold Signature Multi-Signature

verification cost
maintenance cost
implementation complexity
secret management
support of blockchains
accountability

interactive

low
low
high
easy
Native
no

synchronous

high
high
low
hard
no
yes

asynchronous

Distributed key generation, sign, reshare

([
o (((

A scenario

Q [
5 QT+0
Q Ll

Level of shares:

Level 1

Level 2

Level 3

AMIS solution: Hierarchical Threshold
Signature Scheme

« Support ECDSA, and EdDSA (Audited, In progress)
« Support DKG, Sign, Reshare, and Add share

« Open Library

Ref: https://github.com/getamis/alice

https://github.com/getamis/alice

Coinbase developer grant winners 2022

coinbase GIVING

Ref: https://blog.coinbase.com/announcing-our-second-developer-grant-winners-ffd3f6e93860

Product: Qubic Wallet .

/ %
@ Password

Signature r»ff\l

Threshold Sighature %\/’I‘ﬁ

Blockchain

X <!

@ Password
A MI S

Also support 2 party HD Wallet

master

private key

left I

Y

a random HMAC: master
seed s digest I public key
right
master
chain-code

Fig. 1: BIP32: Master Key Generation

Master

2-party chain code
HMAC-
Machine Master

public key
—

Share 2

Fig. 2: 2-Party BIP32:Master Key Generation

Paper: Joint work with Yi-Hong Hsu, Ting Fung Lee.

Project: AMIS Team

