
Proprietary + Confidential

Kubernetes DevSecOps
Peek Into
Secure Software Supply Chain
for Kubernetes
Oct 19th, 2022

Shawn Ho, AppMod Specialist

Proprietary

Container Advantages in Security

Containers are short lived

and frequently re-deployed;

you can constantly be

patching.

Containers are intentionally

immutable; a modified

container is a built-in

security alert.

Good security defaults are

one line changes; setting

secure configurations

is easy.

With isolation technologies,

you can increase

security without

adding resources.

Agenda

01 Security Challenges from OSS: 開源軟體對資安的挑戰

02 SDLC & SBOM & SLSA: 社群的努力

03 Software Delivery Shield: 平台部署+持續防護

04 Software Delivery Shield End-to-End 的實現

Agenda

01 Security Challenges from OSS: 開源軟體對資安的挑戰

02 SDLC & SBOM & SLSA: 社群的努力

03 Software Delivery Shield: 平台部署+持續防護

04 Software Delivery Shield在GCP上的實現

Supply Chain Attacks

Increasingly, the software development
lifecycle (SDLC) itself has become a vector
for attacks.

The recent Log4Shell, SolarWinds,
Kaseya, and Codecov hacks highlight
vulnerable surface areas exposed in the
SDLC.

%
Surge in OSS supply chain
attacks 1

%
Commercial code bases have OSS
vulnerabilities 2

%
of organizations worldwide will
have experienced attacks on their
software supply chains by 2025 3

81
45

650

On the rise

1. Sonatype, 2021 - State of the Software Supply Chain
2. Synopsys, 2022 - Open Source Security and Risk Analysis Report
3. Gartner, 2021 - How Software Engineering Leaders Can Mitigate
 Software Supply Chain Security Risks

My Project

redux

react

papercss

1500

1

1500

1500

core-js

90

babel

970

gulp

250
undertaker

25

nyc

100

webpack

700

Project Direct dependencies Transitive dependencies Transitive layer 2 Transitive layer 3

test262-strea
m

4

站在巨人肩膀上的代價：開源軟體的高依存性

deps.dev

CI Pipeline 的攻擊手法

Source: Palo Alto Network Unit 42 Container Threat Report 2H 2021

https://www.paloaltonetworks.com/content/dam/pan/en_US/assets/pdf/reports/Unit_42/unit-42-cloud-threat-report-2h-2021.pdf

Proprietary + Confidential

Person

Source Build Package Run

Dependency
(includes build toolchains)

容器開發生命週期

DevOps SecOpsDev

Deploy

Proprietary + Confidential

Person

Source Build Package Run

Dependency
(includes build toolchains)

惡意程式碼
注入
(A)

遭入侵的
源碼庫

(B)

編譯自被惡意更
改的源碼

(C)

入侵編譯
系統
(D)

引用到有弱點
的函式庫

(E)

跳過 CI/CD,
注入有害的
函式庫

 (F)

入侵的鏡像庫或是
鏡像簽章系統

(G)

使用被入侵的鏡像
(H)

攻擊介面 (Attack Vectors - Build)

DevOps SecOpsDev

Deploy

Agenda

01 Security Challenges from OSS: 開源軟體對資安的挑戰

02 SDLC & SBOM & SLSA: 社群的努力

03 Software Delivery Shield: 平台部署+持續防護

04 Software Delivery Shield在GCP上的實現

Proprietary + Confidential

Industry & Government
Priority

The recent U.S. executive order,
European Union Agency for
Cybersecurity, and others are
requiring governmental
contractors and essential utilities
to follow a high standard of SDLC
security has accelerated the
urgency and timeline.

We anticipate these standards to
become broad market norms.

Proprietary + Confidential

Google BAB (Binary Authorization For Borg) Process:

Service Specified Policy
(Build)

Enforcement Mode
(Run)

Code must be
Auditable

Traceable Build Image
to human-readable
source

3

Code must be
Submitted

Code must be
reviewed and built

through internal
system

2

Configuration must
be Submitted

Configuration must be
reviewed and submitted
through internal process.

1

Deployment
Time Enforce

Mode

Continuous
Verification

Mode

Emergency
Response

Mode

Reference

https://cloud.google.com/docs/security/binary-authorization-for-borg

Proprietary + Confidential

SLSA (“ salsa”) framework

Supply Chain Levels for Software Artifacts
A security framework to secure three main areas involved in software artifact creation:

Build Integrity

● Modification of code after source control
● Compromised build platforms
● Bypassing CI/CD

Source Integrity

● Available change history
● Code review
● Compromised source control systems

Dependencies

● Applying SLSA checks recursively to dependencies
● Dependency confusion

Steering Committee

Proprietary + Confidential

 SLSA Levels

Automation & Provenance
Build must be fully scripted/automated
and generate provenance

Version Control & Signed
Provenance

Requires using version control and hosted
build service that generates
authenticated provenance

Non-falsifiable, Ephemeral

Builds are fully trustworthy, with identity
attestations of underlying build
infrastructure/hardware. Ephemeral
builds leave nothing behind.

Hermetic Builds, Review

All build inputs/dependencies are specified
upfront with no internet egress during the
build. Two-party reviews.

Measure integrity levels for build, source and dependencies See: slsa.dev

Proprietary + Confidential

 SLSA Levels

Automation & Provenance
Build must be fully scripted/automated
and generate provenance

Measure integrity levels for build, source and dependencies See: slsa.dev

Proprietary + ConfidentialLevel 1: Signed Provenance
P.O 負責產生Layout

Product
Owner

Dev DevOps

Product Layout

Proprietary + Confidential

Product
Owner

Dev DevOps

Product Layout

Source Clone Code + Version
Change Package

Level 1: Signed Provenance
Layout定義工作流程與對應簽章

Proprietary + Confidential

Product
Owner

Dev DevOps

Product Layout

Source Clone Code + Version
Change Package

Level 1: Signed Provenance
執行完成後，由執行者簽章

Proprietary + Confidential

Product
Owner

Dev DevOps

Product Layout

Source Clone Code + Version
Change Package

Level 1: Signed Provenance
P.O 可依照簽章進行檢查+部署

Final Product
(Signatures+SHA)

Proprietary + Confidential

Demo
In-toto-verify: Good In-toto-verify: Tampered

Agenda

01 Security Challenges from OSS: 開源軟體對資安的挑戰

02 SDLC & SBOM & SLSA: 社群的努力

03 Software Delivery Shield: 平台部署+持續防護

04 Software Delivery Shield在GCP上的實現

Proprietary + Confidential

Person

Source Build Package Run

Dependency
(includes build toolchains)

惡意程式碼
注入
(A)

遭入侵的
源碼庫

(B)

編譯自被惡意更
改的源碼

(C)

入侵編譯
系統
(D)

引用到有弱點
的函式庫

(E)

跳過 CI/CD,
注入有害的
函式庫

 (F)

入侵的鏡像庫或是
鏡像簽章系統

(G)

使用被入侵的鏡像
(H)

攻擊介面 (Attack Vectors) Build + Deploy+Run

DevOps SecOpsDev

Deploy

入侵部署流程
(X)

部署被入侵
的鏡像

(Y)

系統上線後
新發布的漏洞

(Z)

A-H : SLSA standard
A-H + X-Z: Software Delivery Shield

Proprietary + Confidential

In-Toto概念在K8S的實現：加上K8S平台上的部署政策

In-Toto + Cosign + Policy Controller

Cosign with
Policy Controller

Cosign
Image Signing

Docker Registry Kubernetes
Engine

Admission control

● 安裝Cosign Policy Controller
● 設計ClusterImagePolicy with

cue or rego

https://github.com/sigstore/helm-charts/tree/main/charts/policy-controller
https://github.com/cue-lang/cue/blob/master/doc/tutorial/basics/Readme.md
https://www.openpolicyagent.org/docs/latest/policy-language/

Proprietary + Confidential

Demo: From Signing to Deploying
準備：

● 展示Policy-Controller

● 標註對象名稱空間policy
enabled=true

● 展示對應的ClusterImagePolicy

展示：
● 簽署編譯成功的映像檔

● 部署已帶有簽章的鏡像檔

● 部署未帶有簽章的映像檔

Proprietary + Confidential

 SLSA Security Level 3

Automation & Provenance
Build must be fully scripted/automated
and generate provenance

Version Control & Signed
Provenance

Requires using version control and hosted
build service that generates
authenticated provenance

Non-falsifiable, Ephemeral

Builds are fully trustworthy, with identity
attestations of underlying build
infrastructure/hardware. Ephemeral
builds leave nothing behind.

Measure integrity levels for build, source and dependencies See: slsa.dev

Proprietary + Confidential

SLSA Security Level 3概念在K8S的實現：

Github Action + Cosign + Policy Controller

Cosign with
Policy Controller

+
Rego or Cue

Github Action

Cosign
Image Signing

Docker Registry Kubernetes
Engine

Cloud Code

Github Action

Cloud Run

Admission control

WorkStation

Must be Ephemeral

Proprietary + Confidential

Demo: Self-Attested for SLSA Security L3
Github Action + Cosign + Policy Controller

Proprietary + ConfidentialCloudBuild: Managed Service for Provenance Provider/Signing
SLSA Security L3 Build Support

Material: 源碼壓縮檔位置

Metadata: 創建時間
源碼的MD5 Hash 執行步驟

Proprietary + Confidential

In-Toto概念在GCP的實現：Managed Attester & Verification on GCP
In-Toto + CloudBuild + Binary Authorization

Binary
Authorization

Cloud Build
Image Signing

Docker Registry Kubernetes
Engine

Admission control

● 安裝Binary Authorization
● 設計Policy:

○ defaultAdmissionRule:
○ clusterAdmissionRule:

Proprietary + Confidential

Demo

準備：
● 設定Binary Authorization Policy

● 使用Skaffold 快速Build出一個
帶簽章的版本

展示：
● 使用slsa-verifier驗證Skaffold

Build出的鏡像檔案

● 部署已帶有簽章的鏡像檔

● 部署未帶有簽章的映像檔

Agenda

01 Security Challenges from OSS: 開源軟體對資安的挑戰

02 SDLC & SBOM & SLSA: 社群的努力

03 Software Delivery Shield: 平台部署+持續防護

04 Software Delivery Shield在GCP上的實現

Ephemeral & Secure CI FlowHardened K8S Cluster (CIS)

Ephemeral & Secure CI Flow

IDE+套件 IDE+套件 IDE+套件IDE+套件

Software Delivery
Shield

Policy

Develop Supply CI (Image Prepare)

Runtime

End-to-End Software Supply Chain Security Solution

CD

IDE+套件

Containerized
Workstation

SAST

SonarQube, snyk

SCA

SonaType, snyk,
Secure Src Mgr

OSS
License
Scancode

Key/Secret

SonarQube,
Gitleaks

Container
CVE Detect
Harbor, gcr.io,

artifact repository

Safe Builder

BuildPack,
Multi-Stage Build

Container
Unitest

Structure-test
ossf

Attester Sign

Cosign, CloudBuild,
slsa-generator

YAML
Validator

Checkov, Gator

Policy
Controller

Cosign PC, Binary
Authz, slsa-verifier

DSAT

OWASP Zap

Container
CVE Detect
Harbor, gcr.io,

artifact repository

Runtime
Vulnerability

Falco, GKE
security posture

CI (Image Attest)

https://github.com/GoogleCloudPlatform/click-to-deploy/blob/master/k8s/sonarqube/README.md
https://github.com/beevelop/docker-scancode
https://github.com/GoogleCloudPlatform/click-to-deploy/blob/master/k8s/sonarqube/README.md
https://gitleaks.io/
https://github.com/goharbor/harbor
https://github.com/paketo-buildpacks
https://github.com/GoogleContainerTools/container-structure-test
https://github.com/ossf/scorecard
https://github.com/slsa-framework/slsa-github-generator/blob/main/internal/builders/generic/README.md
https://github.com/bridgecrewio/checkov
https://open-policy-agent.github.io/gatekeeper/website/docs/gator/
https://github.com/sigstore/policy-controller
https://github.com/slsa-framework/slsa-verifier
https://www.zaproxy.org/docs/docker/full-scan/
https://github.com/goharbor/harbor
https://falco.org/docs/getting-started/third-party/production/

Proprietary + Confidential

SLSA-Level 3概念在GCP的實現：

Cloud Build + Artifact Registry + Binary Authorization

Binary
AuthorizationCloud Build

Cloud Build
Image Signing

Artifact Registry Kubernetes
Engine

Cloud Code

Cloud Build
or

Cloud Deploy

Cloud Run

Admission control

Cloud
WorkStations

CloudBuild is
Ephemeral

IDE+套件

Containerized
Workstation

OSS
License
Scancode

Key/Secret

Gitleaks

Container
CVE Detect

Artifact
Repository

Safe Builder

Github Action,
CloudBuild

Attester Sign

CloudBuild

Policy
Controller

Binary Authz,
slsa-verifier

DSAT

OWASP Zap

https://github.com/beevelop/docker-scancode
https://gitleaks.io/
https://github.com/slsa-framework/slsa-verifier
https://www.zaproxy.org/docs/docker/full-scan/

Proprietary + Confidential

Demo: Secure Delivery Shield 在GCP的實現

1. Key/Secret Check

2. OSS License Validation

3. Build Image with

CloudBuild

4. Verify Signature with

slsa-verifier

5. Verify Image CVEs with

Container Analysis API

6. Provide SBOM along with

image

7. Deploy Image with

Skaffold+Kustomize

8. DSAT Test with ZAP

Proprietary + Confidential

Road to SLSA Security Level 4

Automation & Provenance
Build must be fully scripted/automated
and generate provenance

Version Control & Signed
Provenance

Requires using version control and hosted
build service that generates
authenticated provenance

Non-falsifiable, Ephemeral

Builds are fully trustworthy, with identity
attestations of underlying build
infrastructure/hardware. Ephemeral
builds leave nothing behind.

Hermetic Builds, Review

All build inputs/dependencies are specified
upfront with no internet egress during the
build. Two-party reviews.

Measure integrity levels for build, source and dependencies See: slsa.dev

Learn more

了解更多開發供應鏈
上資安強化

To learn more about software supply chain security, visit:
cloud.google.com/software-supply-chain-security

嘗試 Software
Delivery Shield

Check out our Quickstart tutorials to get started with Software Delivery Shield:
cloud.google.com/software-supply-chain-security/docs/sds/overview
bit.ly/SoftwareDeliveryShield

關注以下的社群 ● SBOM - The Linux Foundation
● Sigstore - The Linux Foundation
● ScoreCard- Open Security Source Foundation (OSSF)
● SLSA - An Industry Collaboration
● Deps.dev - Open Source Insight Team, powered by Google

http://cloud.google.com/software-supply-chain-security
http://cloud.google.com/software-supply-chain-security/docs/overview
http://bit.ly/SoftwareDeliveryShield
https://www.linuxfoundation.org/blog/blog/what-is-an-sbom
https://www.sigstore.dev/trust-security
https://github.com/ossf/scorecard
https://slsa.dev/community
https://deps.dev/about

Thank you
cloud.google.com/software-supply-chain-security

Software Delivery Shield

Fully managed development
environments
 Cloud Workstations

● On-demand environments accessible anywhere

● Security policies

● Managed base images

● VPC and VPC-Service controls

Develop

Preview

Software Delivery Shield

Security assistance
in the IDE
 Cloud Code source protect

● Vulnerability detection as you code

● Support for scanning transitive dependencies

● Dependency license reporting

Develop

Preview

Proprietary + Confidential

Software Delivery Shield

Improving security of artifacts and dependencies

Preview

 Artifact Registry & Container Analysis

 Assured Open Source Software

● Artifact Registry - Maven virtual and remote repos

● Container Analysis - On-push Maven and Go container
scanning and standalone Maven package scanning

● Container Analysis - On-push SBOM dependency list
generation for containers

● Assured Open Source Software - 250+ Java and Python
packages

Proprietary + Confidential

Software Delivery Shield

Enhance the security of your CI pipelines

 Cloud Build

● SLSA Level 3 build support (slsa.dev)

● Build provenance for non-container Java (Maven) and
Python packages

● Security insights panel

Preview

http://slsa.dev

Proprietary + Confidential

Software Delivery Shield

Security insights at the runtime

 GKE security posture

 Cloud Run security insights

● GKE continuous runtime vulnerability and workload
configuration scanning

● Cloud Run insights into security target levels, service
vulnerabilities, and build provenance

Preview

Proprietary + Confidential

Software Delivery Shield

Cosign to prevent unauthorized images

Preview

In Kubernetes:

- Install by helm chart

- Use ClusterImagePolicy to replace policy
parameter in cosign

- Need to tag namespace with
policy.sigstore.dev/include=true to enable
admission webhook

- Attestation can be revoked which prevents

the image to run on the cluster again.

https://github.com/sigstore/helm-charts/tree/main/charts/policy-controller
https://docs.sigstore.dev/policy-controller/overview/#enable-policy-controller-admission-controller-for-namespaces

