
Dapr
Distributed Application Runtime

Philip Chen
Sr. Corp Cloud Solution Architect
Microsoft, Customer Success, Hybrid & Edge Strategy



Modern microservice architectures

好擴充
Deploying scale-

out apps for 

flexibility, cost, 

and efficiency

服務互動
Developing 

resilient, scalable, 

microservice-

based apps that 

interact with 

services

專注在應用開發
Focusing on

building 

applications, not 

infrastructure

程式簡化
Trending toward 

serverless 

platforms with 

simple code to 

cloud pipelines

多程式語言
Using multiple 

languages and 

frameworks 

during 

development



Common challenges in microservice development

複雜的開發工具
Disjointed tools and 

runtimes to build 

distributed applications

執行環境耦合過高
Runtimes have limited 

language support and 

tightly controlled feature 

sets

無法跨雲整合
Runtimes only target 

specific infrastructure 

platforms with limited 

portability 



cncf.io/projects/dapr



Dapr value pillars



HTTP API gRPC API

Microservice building blocks

Application code

Microservices written in

Any code or framework…

Service-
to-service 
invocation

State 
management

Publish
and

subscribe

Resource
bindings

and triggers

Actors Observability Secrets Configuration

Hosted on any cloud or edge infrastructure …

On-PremisesAzure Arc



Dapr components

My App

Observability
Prometheus AppInsights JaegerZipkin

Bindings

& Triggers

State

Stores

Secret

Stores

PubSub

Brokers

Configuration



Sidecar model 邊車模型

My App Dapr API

POST http://localhost:3500/v1.0/invoke/cart/method/neworder

GET http://localhost:3500/v1.0/state/inventory/item67

POST http://localhost:3500/v1.0/publish/shipping/orders

GET http://localhost:3500/v1.0/secrets/keyvault/password

HTTP/gRPC

Application

Dapr sidecar



Dapr Sidecar yaml

sample

python.yaml

apiVersion: apps/v1

kind: Deployment

metadata:

name: pythonapp

labels:

app: python

spec:

replicas: 1

selector:

matchLabels:

app: python

template:

metadata:

labels:

app: python

annotations:

dapr.io/enabled: "true"

dapr.io/app-id: "pythonapp"

dapr.io/enable-api-logging: "true"

spec:

containers:

- name: python

image: ghcr.io/dapr/samples/hello-k8s-python:latest

dapr.io/enabled: true - this tells 

the Dapr control plane to inject 

a sidecar to this deployment

dapr.io/app-id: pythonapp - this 

assigns a unique ID or name to 

the Dapr application, so it can 

be sent messages to and 

communicated with by other 

Dapr apps



Service invocation

Service AMy App

mDNS Multicast DNS component 

for service discovery

mTLS encryption

POST
http://localhost:3500/v1.0/invoke/servicea/method/neworder

{"data":"Hello World"}

POST
http://10.0.0.2:8000/neworder

{"data":"Hello World"}



Publish and subscribe

Service BMy App Redis

Cache

Service A

POST
http://localhost:3500/v1.0/publish/orders/processed

{"data":"Hello World"}

POST
http://10.0.0.2:8000/orders

http://10.0.0.4:8000/factory/orders

{"data":"Hello World"}



Dapr pub/sub API

App-to-sidecar

Publish a message

POST /v1.0/publish/orders/processed

orders.yaml

apiVersion: dapr.io/v1alpha1

kind: Component

metadata:

name: orders

spec:

type: pubsub.redis

metadata:

- name: redisHost

value: leader.redis.svc.cluster.local:6379

- name: redisPassword

secretKeyRef:

name: redis-secret

key: password

- name: allowedTopics

value: "processed,audit"

Sidecar-to-app

Get app subscriptions

GET /dapr/subscribe

Publish to app

POST /order-processing



Observability

OpenTelemetry collector
Logging &

tracing extensions

My App Redis

Cache

Twitter

Service B

Service A



Distributed tracing

Dapr distributed tracing features:

Built-in Zipkin collection and viewer

Configurable sampling rates

Emit tracing data from calls to/from 

Dapr sidecars and system services for 

easy application-level instrumentation



Metrics

Dapr Metrics features:

Call latency

CPU/memory usage

Error rates

Sidecar injection failures

System health

Built-in monitoring capabilities to 

understand the behavior of the 

Dapr sidecar and system services



Input triggers

My App
Twitter

POST
http://10.0.0.2:8000/newtweet

{"data":“📢 We are excited 
to announce the …"}



Output bindings

My App
Twilio

POST
http://localhost:3500/v1.0/bindings/twilio

{"data":"Hello World"}

Hello World



Case Study: Bosch

• Residential IoT Services GmbH (RIoT) 

group chartered to implement and 

operate a smart home ecosystem

• Multi-language support for Java & JS

• Dapr eases the move to event-driven 

microservices



Case Study: Zeiss

• Microservice architecture for Order 

Processing application

• Support for multiple cloud and 

on-premises environments



Dapr Demo

Dapr + Rancher K3S 



Rancher K3S 

half the size (memory footprint) of K8S … 

Lightweight Kubernetes. Easy to 

install, half the memory, all in a 

binary of less than 100 MB

Great for:

• Edge, IoT, CI, Development, ARM, 

Embedding K8s …

K3s is a fully compliant Kubernetes 
distribution with lightweight storage, 
packaged as a single binary, external 
dependencies minimized …



Dapr Installation and Version management 

 Install with Dapr CLI

 Install with Helm

 Azure Arc - Manage your 

Kubernetes with Extension 

framework
• Get started with dapr init -k

• Fully managed Dapr control plane

• Deploys dashboard, placement, operator, 

sentry, and injector pods

• Automatically inject Dapr sidecar into 

all annotated pods

• Upgrade with dapr upgrade or Helm



Dapr on Kubernetes

Any cloud or edge infrastructure

Pod

Actor 

partition 

placement
Placement

Pod

Dapr

runtime

injector
Injector

Pod

Cert authority

and identity Sentry

Pod

Update 

component

changes
Operator

Pod

My App

Kubelet Use components

Inject Dapr sidecar 

into annotated pods

Inject env variables

Manage mTLS

between services

Assign spiffe identity

Create mapping table of 

actor instances to pods

Manage component updates

Manage Kubernetes

service endpoints

Readiness and Liveness 

probe on healthz API to 

determine Dapr health state

State Stores

Pub/Sub

Brokers

Secret Stores

Bindings

& Triggers

Observability

Dapr Components

Operator
Deploys and 

manages Dapr



Dapr demo scenario – Hello Kubernetes



key value

myApp-weapon "DeathStar"

State management

My App

POST
http://localhost:3500/v1.0/state/corpdb

[{
"key": "weapon",
"value": "DeathStar"

}]

Redis Cache



Dapr state API

Save state

POST /v1.0/state/corpdb

Retrieve state

GET /v1.0/state/corpdb/mystate

Delete state

DELETE /v1.0/state/corpdb/mystate

Get bulk state

POST /v1.0/state/corpdb/bulk

Submit multiple state transactions

POST /v1.0/state/corpdb/transaction

corpdb-redis.yaml

apiVersion: dapr.io/v1alpha1

kind: Component

metadata:

name: corpdb

spec:

type: state.redis

version: v1

metadata:

- name: redisHost

value: redis-master.default.svc.cluster.local:6379

- name: redisPassword

secretKeyRef:

name: redis-secret

key: redis-password



Node App Creation

python.yaml

kind: Service

apiVersion: v1

metadata:

name: nodeapp

labels:

app: node

spec:

selector:

…

type: LoadBalancer

---

apiVersion: apps/v1

kind: Deployment

metadata:

name: nodeapp

labels:

app: node

spec:

replicas: 1

...

app: node

annotations:

dapr.io/enabled: "true"

dapr.io/app-id: "nodeapp"

dapr.io/app-port: "3000"

dapr.io/enable-api-logging: "true"

spec:

dapr.io/enabled: true - this tells 

the Dapr control plane to inject 

a sidecar to this deployment

dapr.io/app-id: nodeapp - this 

assigns a unique ID or name to 

the Dapr application, so it can 

be sent messages to and 

communicated with by other 

Dapr apps



Python App Creation

python.yaml

apiVersion: apps/v1

kind: Deployment

metadata:

name: pythonapp

labels:

app: python

spec:

replicas: 1

selector:

matchLabels:

app: python

template:

metadata:

labels:

app: python

annotations:

dapr.io/enabled: "true"

dapr.io/app-id: "pythonapp"

dapr.io/enable-api-logging: "true"

spec:

containers:

- name: python

image: ghcr.io/dapr/samples/hello-k8s-python:latest

dapr.io/enabled: true - this tells 

the Dapr control plane to inject 

a sidecar to this deployment

dapr.io/app-id: pythonapp - this 

assigns a unique ID or name to 

the Dapr application, so it can 

be sent messages to and 

communicated with by other 

Dapr apps



Daprd as sidecar in your Pod 



Python App

• This is a basic Python app 

that posts JSON messages 

to localhost:3500, which is 

the default listening port 

for Dapr

• Invoke the Node.js 

application's neworder

endpoint by posting to 

v1.0/invoke/nodeapp/met

hod/neworder. 



Node App

• Node App handling:

• /order: get latest order 

from statestore

• /neworder: get new order 

from Python App and 

persist in Redis statestore



Observe Node App Messages and Confirm state 

persistence

Last Order from Python App to

Node App



Dapr Dashboard kubectl --kubeconfig local.yaml port-

forward svc/dapr-dashboard -n dapr-system 

8081:8080



Azure Arc enabled Kubernetes
Connect, manage, and operate Kubernetes clusters and applications running anywhere using Azure Arc

ConfigureConnect
Govern 

and Secure
Operate

and Monitor

AKS OpenShiftkubeadm GKEEKS VMware Tanzu



Dapr building blocks

Secrets

Securely access 

secrets from your 

application

Observability

See and measure 

the message calls 

across components 

and networked 

services

Actors

Encapsulate code 

and data in 

reusable actor 

objects as a 

common 

microservices 

design pattern 

Bindings
(input/output)

Trigger code through 

events from a large 

array of inputs

Input and output 

bindings to external 

resources including 

databases and 

queues

Publish

and

subscribe

Secure, scalable 

messaging 

between services

State 

management

Create long 

running, stateless 

and stateful 

services

Service-to-

service 

invocation

Perform direct, 

secure, service-

to-service 

method calls

Configuration

Manage and be 

notified of 

application 

configuration 

changes



Join Dapr Community

 dapr/community 

 Communication

 Questions and issues

 Release planning meetings

 Every Tuesday at 9 a.m. PST, one-hour release 

meetings 

 Community meetings

 Every two weeks, a community meeting to 

showcase new features, review upcoming 

milestones, and engage in a Q&A

https://github.com/dapr/community#dapr-authors


Thank you!


